REFERENCIAS

[1] “Cardiovascular diseases (CVDs).” https://www.who.int/en/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds) (accessed Mar. 21, 2023).

[2] T. Mandviwala, U. Khalid, and A. Deswal, “Obesity and Cardiovascular Disease : a Risk Factor or a Risk Marker ?,” 2016, doi: 10.1007/s11883-016-0575-4.

[3] M. S. Ellulu, I. Patimah, H. Khaza, A. Rahmat, Y. Abed, and F. Ali, “Atherosclerotic cardiovascular disease: a review of initiators and protective factors,” doi: 10.1007/s10787-015-0255-y.

[4] Ž. Reiner, “Hypertriglyceridaemia and risk of coronary artery disease,” Nat. Rev. Cardiol. 2017 147, vol. 14, no. 7, pp. 401–411, Mar. 2017, doi: 10.1038/nrcardio.2017.31.

[5] D. Masuda and S. Yamashita, “Postprandial hyperlipidemia and remnant lipoproteins,” J. Atheroscler. Thromb., vol. 24, no. 2, pp. 95–109, 2017, doi: 10.5551/jat.RV16003.

[6] G. Kolovou et al., “Assessment and Clinical Relevance of Non-Fasting and Postprandial Triglycerides: An Expert Panel Statement,” Curr. Vasc. Pharmacol., vol. 999, no. 999, pp. 1–13, 2011, doi: 10.2174/1570211213146321611.

[7] K. Nakajima et al., “Postprandial lipoprotein metabolism: VLDL vs chylomicrons,” Clin. Chim. Acta., vol. 412, no. 15–16, pp. 1306–1318, Jul. 2011, doi: 10.1016/J.CCA.2011.04.018.

[8] K. A. Pérez-Vega et al., “Mediterranean Diet, Energy Restriction, Physical Activity, and Atherogenicity of Very-Low Density Lipoproteins: Findings from Two Randomized Controlled Trials,” Mol. Nutr. Food Res., vol. 67, no. 1, Jan. 2023, doi: 10.1002/MNFR.202200338.

[9] L. K. Grant, C. A. Czeisler, S. W. Lockley, and S. A. Rahman, “Time-of-day and Meal Size Effects on Clinical Lipid Markers,” J. Clin. Endocrinol. Metab., vol. 106, no. 3, pp. E1373–E1379, 2021, doi: 10.1210/clinem/dgaa739.

[10] Ministerio de Salud, Gobierno de Chile “Orientación técnica dislipidemias 2018,” 2018.

[11] Ministerio de la Salud, Gobierno de Chile “Encuesta nacional de salud 2016-2017 Segunda entrega de resultados,” Ens 2016-2017, no. Encuesta Nacional de Salud, p. 50, 2018

[12] M. C. W. Myhrstad et al., “Fish oil supplementation induces expression of genes related to cell cycle, endoplasmic reticulum stress and apoptosis in peripheral blood mononuclear cells: A transcriptomic approach,” J. Intern. Med., vol. 276, no. 5, pp. 498–511, 2014, doi: 10.1111/joim.12217.

[13] A. Rundblad et al., “Differences in peripheral blood mononuclear cell gene expression and triglyceride composition in lipoprotein subclasses in plasma triglyceride responders and non-responders to omega-3 supplementation,” Genes Nutr., vol. 14, no. 1, pp. 1–13, 2019, doi: 10.1186/s12263-019-0633-y.

[14] T. J. Guzik, D. S. Skiba, R. M. Touyz, and D. G. Harrison, “The role of infiltrating immune cells in dysfunctional adipose tissue,” Cardiovasc. Res., vol. 113, no. 9, pp. 1009–1023, 2017, doi: 10.1093/cvr/cvx108.

[15] S. Dalle et al., “Omega-3 Supplementation Improves Isometric Strength But Not Muscle Anabolic and Catabolic Signaling in Response to Resistance Exercise in Healthy Older Adults,” J. Gerontol. A. Biol. Sci. Med. Sci., vol. 76, no. 3, pp. 406–414, Mar. 2021, doi: 10.1093/GERONA/GLAA309.

[16] A. Tahir et al., “An evaluation of lipid profile and pro-inflammatory cytokines as determinants of cardiovascular disease in those with diabetes: a study on a Mexican American cohort,” Sci. Reports 2021 111, vol. 11, no. 1, pp. 1–12, Jan. 2021, doi: 10.1038/s41598-021-81730-6.

[17] A. R. Barry and D. L. Dixon, “Omega-3 fatty acids for the prevention of atherosclerotic cardiovascular

disease,” Pharmacotherapy, vol. 41, no. 12, pp. 1056–1065, 2021, doi: 10.1002/phar.2615.

[18] G. C. Shearer, O. V. Savinova, and W. S. Harris, “Fish oil - How does it reduce plasma triglycerides?,” Biochim. Biophys. Acta - Mol. Cell Biol. Lipids, vol. 1821, no. 5, pp. 843–851, 2012, doi: 10.1016/j.bbalip.2011.10.011.

[19] B. G. Nordestgaard and A. Varbo, “Triglycerides and cardiovascular disease,” Lancet, vol. 384, no. 9943, pp. 626–635, 2014, doi: 10.1016/S0140-6736(14)61177-6.

[20] J. K. Innes and P. C. Calder, “Marine omega-3 (N-3) fatty acids for cardiovascular health: An update for 2020,” Int. J. Mol. Sci., vol. 21, no. 4, pp. 1–21, 2020, doi: 10.3390/ijms21041362.

[21] A. Rao, D. Briskey, J. O. Nalley, and E. Ganuza, “Omega-3 Eicosapentaenoic Acid (EPA) Rich Extract from the Microalga Nannochloropsis Decreases Cholesterol in Healthy Individuals: A Double-Blind, Randomized, Placebo-Controlled, Three-Month Supplementation Study,” Nutrients, vol. 12, no. 6, pp. 1–14, 2020, doi: 10.3390/NU12061869.

[22] D. L. Bhatt et al., “Cardiovascular risk reduction with icosapent ethyl for hypertriglyceridemia,” N. Engl. J. Med., vol. 380, no. 1, pp. 11–22, 2019, doi: 10.1056/NEJMoa1812792.

[23] M. Á. Rincón-Cervera, V. González-Barriga, J. Romero, R. Rojas, and S. López-Arana, “Quantification and Distribution of Omega-3 Fatty Acids in South Pacific Fish and Shellfish Species,” Foods (Basel, Switzerland), vol. 9, no. 2, 2020, doi: 10.3390/FOODS9020233.

[24] J. Oscarsson and E. Hurt-Camejo, “Omega-3 fatty acids eicosapentaenoic acid and docosahexaenoic acid and their mechanisms of action on apolipoprotein B-containing lipoproteins in humans: A review,” Lipids Health Dis., vol. 16, no. 1, Aug. 2017, doi: 10.1186/s12944-017-0541-3.

[25] M. J. Caslake et al., “Effect of sex and genotype on cardiovascular biomarker response to fish oils: The FINGEN Study,” Am. J. Clin. Nutr., vol. 88, no. 3, pp. 618–629, 2008, doi: 10.1093/ajcn/88.3.618.

[26] P. Hansson et al., “Meals with similar fat content from different dairy products induce different postprandial triglyceride responses in healthy adults: A randomized controlled cross-over trial,” J. Nutr., vol. 149, no. 3, pp. 422–431, 2019, doi: 10.1093/jn/nxy291.

[27] S. Bellary, B. Krishnankutty, and M. S. Latha, “Basics of case report form designing in clinical research,” Perspect. Clin. Res., vol. 5, no. 4, p. 159, 2014, doi: 10.4103/2229-3485.140555.

[28] R. Ratner, P. Hernández, J. Martel, and E. Atalah, “Propuesta de un nuevo índice de calidad global de la alimentación,” Rev. Chil. Nutr., vol. 44, no. 1, pp. 33–38, Mar. 2017, doi: 10.4067/S0717-75182017000100005.

[29] P. Chakradeo et al., “Psychometric Testing of a Food Timing Questionnaire and Food Timing Screener,” Curr. Dev. Nutr., vol. 6, no. 2, Feb. 2021, doi: 10.1093/CDN/NZAB148.

[30] S. E. Berry et al., “Human postprandial responses to food and potential for precision nutrition,” Nat. Med., vol. 26, no. 6, pp. 964–973, 2020, doi: 10.1038/s41591-020-0934-0.

[31] V. D. F. de Mello, M. Kolehmanien, U. Schwab, L. Pulkkinen, and M. Uusitupa, “Gene expression of peripheral blood mononuclear cells as a tool in dietary intervention studies: What do we know so far?,” Mol. Nutr. Food Res., vol. 56, no. 7, pp. 1160–1172, 2012, doi: 10.1002/mnfr.201100685.

[32] M. Bouwens, M. G. Bromhaar, J. Jansen, M. Müller, and L. A. Afman, “Postprandial dietary lipid-specific effects on human peripheral blood mononuclear cell gene expression profiles,” Am. J. Clin. Nutr., vol. 91, no. 1, pp. 208–217, Jan. 2010, doi: 10.3945/AJCN.2009.28586.

[33] A. Rundblad et al., “Intake of Fermented Dairy Products Induces a Less Pro-Inflammatory Postprandial Peripheral Blood Mononuclear Cell Gene Expression Response than Non-Fermented Dairy Products: A Randomized Controlled Cross-Over Trial,” Mol. Nutr. Food Res., vol. 64, no. 21, Nov. 2020, doi:

10.1002/MNFR.202000319.

[34] Á. Hernáez et al., “Olive oil polyphenols enhance high-density lipoprotein function in humans: a randomized controlled trial,” Arterioscler. Thromb. Vasc. Biol., vol. 34, no. 9, pp. 2115–2119, 2014, doi: 10.1161/ATVBAHA.114.303374.